164 research outputs found

    TRAV1-2(+) CD8(+) T-cells including oligoconal expansions of MAIT cells are enriched in the airways in human tuberculosis

    Get PDF
    Mucosal-associated invariant T (MAIT) cells typically express a TRAV1-2(+) semi-invariant TCRalpha that enables recognition of bacterial, mycobacterial, and fungal riboflavin metabolites presented by MR1. MAIT cells are associated with immune control of bacterial and mycobacterial infections in murine models. Here, we report that a population of pro-inflammatory TRAV1-2(+) CD8(+) T cells are present in the airways and lungs of healthy individuals and are enriched in bronchoalveolar fluid of patients with active pulmonary tuberculosis (TB). High-throughput T cell receptor analysis reveals oligoclonal expansions of canonical and donor-unique TRAV1-2(+) MAIT-consistent TCRalpha sequences within this population. Some of these cells demonstrate MR1-restricted mycobacterial reactivity and phenotypes suggestive of MAIT cell identity. These findings demonstrate enrichment of TRAV1-2(+) CD8(+) T cells with MAIT or MAIT-like features in the airways during active TB and suggest a role for these cells in the human pulmonary immune response to Mycobacterium tuberculosis

    Single-cell profiling of tuberculosis lung granulomas reveals functional lymphocyte signatures of bacterial control [preprint]

    Get PDF
    In humans and nonhuman primates, Mycobacterium tuberculosis lung infection yields a complex multicellular structureβ€”the tuberculosis granuloma. All granulomas are not equivalent, however, even within the same host: in some, local immune activity promotes bacterial clearance, while in others, it allows persistence or outgrowth. Here, we used single-cell RNA-sequencing to define holistically cellular responses associated with control in cynomolgus macaques. Granulomas that facilitated bacterial killing contained significantly higher proportions of CD4+ and CD8+ T cells expressing hybrid Type1-Type17 immune responses or stem-like features and CD8-enriched T cells with specific cytotoxic functions; failure to control correlated with mast cell, plasma cell and fibroblast abundance. Co-registering these data with serial PET-CT imaging suggests that a degree of early immune control can be achieved through cytotoxic activity, but that more robust restriction only arises after the priming of specific adaptive immune responses, defining new targets for vaccination and treatment

    Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis

    Get PDF
    Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naive and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice

    Mitochondrial respiration contributes to the interferon gamma response in antigen presenting cells [preprint]

    Get PDF
    The immunological synapse allows antigen presenting cells (APC) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While toll-like receptor ligation relies on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNΞ³). Using CRISPR-Cas9, we performed a series of genome-wide knockout screens in macrophages to identify the regulators of IFNΞ³-inducible T cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multi-screen approach enabled us to identify novel pathways that control these functionally distinct markers. Further integration of these screening data implicated complex I of the mitochondrial respiratory chain in the expression of all three markers, and by extension the IFNΞ³ signaling pathway. We report that the IFNΞ³ response requires mitochondrial respiration, and APCs are unable to activate T cells upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous metabolic dependency between IFNΞ³ and toll-like receptor signaling, implicating mitochondrial function as a fulcrum of innate immunity

    Innate Invariant NKT Cells Recognize Mycobacterium tuberculosis–Infected Macrophages, Produce Interferon-Ξ³, and Kill Intracellular Bacteria

    Get PDF
    Cellular immunity to Mycobacterium tuberculosis (Mtb) requires a coordinated response between the innate and adaptive arms of the immune system, resulting in a type 1 cytokine response, which is associated with control of infection. The contribution of innate lymphocytes to immunity against Mtb remains controversial. We established an in vitro system to study this question. Interferon-Ξ³ is produced when splenocytes from uninfected mice are cultured with Mtb-infected macrophages, and, under these conditions, bacterial replication is suppressed. This innate control of bacterial replication is dependent on CD1d-restricted invariant NKT (iNKT) cells, and their activation requires CD1d expression by infected macrophages as well as IL-12 and IL-18. We show that iNKT cells, even in limiting quantities, are sufficient to restrict Mtb replication. To determine whether iNKT cells contribute to host defense against tuberculosis in vivo, we adoptively transferred iNKT cells into mice. Primary splenic iNKT cells obtained from uninfected mice significantly reduce the bacterial burden in the lungs of mice infected with virulent Mtb by the aerosol route. Thus, iNKT cells have a direct bactericidal effect, even in the absence of synthetic ligands such as Ξ±-galactosylceramide. Our finding that iNKT cells protect mice against aerosol Mtb infection is the first evidence that CD1d-restricted NKT cells mediate protection against Mtb in vivo

    CD11cHi monocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis

    Get PDF
    During tuberculosis, lung myeloid cells have two opposing roles: they are an intracellular niche occupied by Mycobacterium tuberculosis, and they restrict bacterial replication. Lung myeloid cells from mice infected with yellow-fluorescent protein expressing M. tuberculosis were analyzed by flow cytometry and transcriptional profiling to identify the cell types infected and their response to infection. CD14, CD38, and Abca1 were expressed more highly by infected alveolar macrophages and CD11cHi monocyte-derived cells compared to uninfected cells. CD14, CD38, and Abca1 triple positive (TP) cells had not only the highest infection rates and bacterial loads, but also a strong interferon-gamma signature and nitric oxide synthetase-2 production indicating recognition by T cells. Despite evidence of T cell recognition and appropriate activation, these TP macrophages are a cellular compartment occupied by M. tuberculosis long-term. Defining the niche where M. tuberculosis resists elimination promises to provide insight into why inducing sterilizing immunity is a formidable challenge

    CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection [preprint]

    Get PDF
    CD4 T cells are essential for immunity to tuberculosis because they produce cytokines including interferon-Ξ³. Whether CD4 T cells act as β€œhelper” cells to promote optimal CD8 T cell responses during Mycobacterium tuberculosis is unknown. Using two independent models, we show that CD4 T cell help enhances CD8 effector functions and prevents CD8 T cell exhaustion. We demonstrate synergy between CD4 and CD8 T cells in promoting the survival of infected mice. Purified helped, but not helpless, CD8 T cells efficiently restrict intracellular bacterial growth in vitro. Thus, CD4 T cell help plays an essential role in generating protective CD8 T cell responses against M. tuberculosis infection in vitro and in vivo. We infer vaccines that elicit both CD4 and CD8 T cells are more likely to be successful than vaccines that elicit only CD4 or CD8 T cells

    Cytolytic CD8+ T Cells Recognizing CFP10 Are Recruited to the Lung after Mycobacterium tuberculosis Infection

    Get PDF
    Optimum immunity against Mycobacterium tuberculosis requires both CD4+ and CD8+ T cells. In contrast with CD4+ T cells, few antigens are known that elicit CD8+ T cells during infection. CD8+ T cells specific for culture filtrate protein-10 (CFP10) are found in purified protein derivative positive donors, suggesting that CFP10 primes CD8+ T cells in vivo. Using T cells from M. tuberculosis–infected mice, we identified CFP10 epitopes recognized by CD8+ T cells and CD4+ T cells. CFP10-specific T cells were detected as early as week 3 after infection and at their peak accounted for up to 30% of CD8+ T cells in the lung. IFNΞ³-producing CD8+ and CD4+ T cells recognizing CFP10 epitopes were preferentially recruited to the lungs of M. tuberculosis–infected mice. In vivo cytolytic activity of CD8+ T cells specific for CFP10 and TB10.3/10.4 proteins was detected in the spleen, pulmonary lymph nodes, and lungs of infected mice. The cytolytic activity persisted long term and could be detected 260 d after infection. This paper highlights the cytolytic function of antigen-specific CD8+ T cells elicited by M. tuberculosis infection and demonstrates that large numbers of CFP10-specific cytolytic CD8+ T cells are recruited to the lung after M. tuberculosis infection

    Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death

    Get PDF
    Virulent Mycobacterium tuberculosis (Mtb) induces a maladaptive cytolytic death modality, necrosis, which is advantageous for the pathogen. We report that necrosis of macrophages infected with the virulent Mtb strains H37Rv and Erdmann depends on predominant LXA4 production that is part of the antiinflammatory and inflammation-resolving action induced by Mtb. Infection of macrophages with the avirulent H37Ra triggers production of high levels of the prostanoid PGE2, which promotes protection against mitochondrial inner membrane perturbation and necrosis. In contrast to H37Ra infection, PGE2 production is significantly reduced in H37Rv-infected macrophages. PGE2 acts by engaging the PGE2 receptor EP2, which induces cyclic AMP production and protein kinase A activation. To verify a role for PGE2 in control of bacterial growth, we show that infection of prostaglandin E synthase (PGES)βˆ’/βˆ’ macrophages in vitro with H37Rv resulted in significantly higher bacterial burden compared with wild-type macrophages. More importantly, PGESβˆ’/βˆ’ mice harbor significantly higher Mtb lung burden 5 wk after low-dose aerosol infection with virulent Mtb. These in vitro and in vivo data indicate that PGE2 plays a critical role in inhibition of Mtb replication
    • …
    corecore